Exercise 1.10
(define (A x y)
(cond ((= y 0) 0)
((= x 0) (* 2 y))
((= y 1) 2)
(else (A (- x 1)
(A x (- y 1))))))
(A 1 10) => 1024
(A 2 4) => 65536
(A 3 3) => 65536
(define (f n) (A 0 n))
(define (g n) (A 1 n))
(define (h n) (A 2 n))
(define (k n) (* 5 n n))
(f n) computes \(2n\), since (A 0 n) => (* 2 n).
(g n) computes \(2^n\) since (A 1 n) => (A 0 (A 1 (- n 1))) => (f (g (- n 1))).
(h n) computes \(^n{2}\): (A 2 n) => (A 1 (A 2 (- n 1))) => (g (h (- n 1))).
(k n) computes \(5n^2\), as stated in the exercise.